A rule-based semantic approach for automated regulatory compliance in the construction sector

نویسندگان

  • Thomas H. Beach
  • Yacine Rezgui
  • Haijiang Li
  • Tala Kasim
چکیده

A key concern for professionals in any industry is ensuring regulatory compliance. Regulations are often complex and require in depth technical knowledge of the domain in which they operate. The level of technical detail and complexity in regulations is a barrier to their automation due to extensive software development time and costs that are involved. In this paper we present a rulebased semantic approach formulated as a methodology to overcome these issues by allowing domain experts to specify their own regulatory compliance systems without the need for extensive software development. Our methodology is based on the key idea that three semantic contexts are needed to fully understand the regulations being automated: the semantics of the target domain, the specific semantics of regulations being considered, and the semantics of the data format that is to be checked for compliance. This approach allows domain experts to create and maintain their own regulatory compliance systems, within a semantic domain that is familiar to them. At the same time, our approach allows for the often diverse nature of semantics within a particular domain by decoupling the specific semantics of regulations from the semantics of the domain itself. This paper demonstrates how our methodology has been validated using a series of regulations automated by professionals within the construction domain. The regulations that have been developed are then in turn validated on real building data stored in an industry specific format (the IFCs). The adoption of this methodology has greatly advanced the process of automating these complex sets of construction regulations, allowing the full automation of the regulation scheme within 18 months. We believe that these positive results show that, by adopting our methodology, the barriers to the building of regulatory compliance systems will be greatly lowered and the adoption of three semantic domains proposed by our methodology provides tangible benefits. ∗Corresponding author Email addresses: [email protected] (T.H. Beach), [email protected] (Y.R. Rezgui), [email protected] (H.Li), [email protected] (T. Kasim) Preprint submitted to Elsevier February 10, 2015

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information Transformation and Automated Reasoning for Automated Compliance Checking in Construction

This paper presents a new approach for automated compliance checking in the construction domain. The approach utilizes semantic modeling, semantic Natural Language Processing (NLP) techniques (including text classification and information extraction), and logic reasoning to facilitate automated textual regulatory document analysis and processing for extracting requirements from these documents ...

متن کامل

An Executive Approach Based On the Production of Fuzzy Ontology Using the Semantic Web Rule Language Method (SWRL)

Today, the need to deal with ambiguous information in semantic web languages is increasing. Ontology is an important part of the W3C standards for the semantic web, used to define a conceptual standard vocabulary for the exchange of data between systems, the provision of reusable databases, and the facilitation of collaboration across multiple systems. However, classical ontology is not enough ...

متن کامل

Automated Regulatory Information Extraction from Building Codes Leveraging Syntactic and Semantic Information

Manual regulatory compliance checking of construction projects is usually timeconsuming and error-prone. There have been efforts both in academia and industry to automate this process. However, none of them achieved full automation. Specifically, the extraction of rules from regulatory text (e.g. building code) and its representation in a computer-processable format is still conducted manually ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2015